An Improved Algebraic Multigrid Method for Solving Maxwell's Equations
نویسندگان
چکیده
We propose two improvements to the Reitzinger and Schöberl algebraic multigrid (AMG) method for solving the eddy current approximations to Maxwell’s equations. The main focus in the Reitzinger/Schöberl method is to maintain null space properties of the weak ∇×∇× operator on coarse grids. While these null space properties are critical, they are not enough to guarantee hindependent convergence of the overall multigrid method. We illustrate how the Reitzinger/Schöberl AMG method loses h-independence due to the somewhat limited approximation property of the grid transfer operators. We present two improvements to these operators that not only maintain the important null space properties on coarse grids but also yield significantly improved multigrid convergence rates. The first improvement is based on smoothing the Reitzinger/Schöberl grid transfer operators. The second improvement is obtained by using higher order nodal interpolation to derive the corresponding AMG interpolation operators. While not completely h-independent, the resulting AMG/CG method demonstrates improved convergence behavior while maintaining low operator complexity.
منابع مشابه
Toward an h-Independent Algebraic Multigrid Method for Maxwell's Equations
We propose a new algebraic multigrid (AMG) method for solving the eddy current approximations to Maxwell’s equations. This AMG method has its roots in an algorithm proposed by Reitzinger and Schöberl. The main focus in the Reitzinger and Schöberl method is to maintain null-space properties of the weak ∇ × ∇× operator on coarse grids. While these null-space properties are critical, they are not ...
متن کاملMultigrid methods for two-dimensional Maxwell's equations on graded meshes
In this work we investigate the numerical solution for two-dimensional Maxwell’s equations on graded meshes. The approach is based on the Hodge decomposition. The solution u of Maxwell’s equations is approximated by solving standard second order elliptic problems. Quasi-optimal error estimates for both u and ∇ × u in the L2 norm are obtained on graded meshes. We prove the uniform convergence of...
متن کاملThe Sine-Cosine Wavelet and Its Application in the Optimal Control of Nonlinear Systems with Constraint
In this paper, an optimal control of quadratic performance index with nonlinear constrained is presented. The sine-cosine wavelet operational matrix of integration and product matrix are introduced and applied to reduce nonlinear differential equations to the nonlinear algebraic equations. Then, the Newton-Raphson method is used for solving these sets of algebraic equations. To present ability ...
متن کاملAn algebraic multigrid method for solving the Laplacian equations used in image analysis
The inhomogeneous Laplace equation with internal Dirichlet boundary conditions has recently appeared in many applications arising from image segmentations, image colorization, image filtering and so on. Efficient solutions of (anisotropy) Laplacian equations have been studied intensively in numerical analysis world. In this project paper, I apply the known algorithms, especially an algebraic mu...
متن کاملAn Algebraic Multigrid Approach Based on a Compatible Gauge Reformulation of Maxwell's Equations
With the rise in popularity of compatible finite element, finite difference and finite volume discretizations for the time domain eddy current equations, there has been a corresponding need for fast solvers of the resulting linear algebraic systems. However, the traits that make compatible discretizations a preferred choice for the Maxwell’s equations also render these linear systems essentiall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 25 شماره
صفحات -
تاریخ انتشار 2003